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Some theoretical ideas are developed concerning the dynamics of a drifting ice cover modelled by a 

four-phase two-dimensional continuous medium with elastioplastic rheology under bulk and shearing 

deformations, including processes of hummocking and the formation of fractures [I]. Phase transition 

conditions are formulated in closed form, depending in general on eight functions that characterize the 

rheological properties of the sheet. New exact solutions are developed for the model equations, 

describing a diverging ice cover drifting in the field of an ocean eddy, the interaction of a diverging ice 

cover with surface waves, the plastic flow of a close pack ice cOver under the influence of a localized sea 

current, and the collision of a &se pack ice massif with a rigid, wedge-shaped wall. 

The choice of a model for ice covers depends on the characteristic space-time scales of the 
phenomena being studied and on the physical and mechanical properties of ice covers. If the 
floes are uniformly distributed over the liquid surface and the relative speeds of neighbouring 
floes are small, the movement and deformations of an ice cover may be described in terms of a 
continuous medium with complex rheology. [l-7]. Previously proposed models include the 
elastic-plastic model [2,3], the viscoplastic model [4], the cavitating fluid model [5], and models 
with viscous rheology (see, for example, [6,7]). 

The main aim of most studies of ice-cover dynamics, whatever models they adopt, has been 
the numerical simulation of ice drift in a fixed region, rather than a theoretical investigation of 
the exact solutions of the model equations. Hence questions relating to the physical rne~~g of 
the solutions have also been ignored. Among the few exceptions are the papers [3,6], which 
point out the importance of theoretical research. 

Pritchard [3], by theoretically analysing the equations of ice-cover dynamics, reached certain 
conclusions about the relationship between structures in drifting ice fields and the character- 
istic curves (gliding strips) of the model equations. Gol’dshtein and Mosolov [6] investigated 
the dependence of ice strength on the fractal characteristics of ice covers, in the context of a 
ship moving in broken ice. 

Our main aim here will be to construct a closed model of an ice cover, describing ice drift, 
taking into account the processes of hummocking and fracture formation, and to carry out a 
theoretical investigation of the simplest problems of ice-cover dynamics that have a bearing on 
actual situations. 

1, The f~amental equations of the ice-cover model are [l] 

d(pAh)idf + pAhVu = 0 

pAh(duldt + f x u) = AF + Va 

(1.1) 

0.2) 
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0.3) 

P = P(P, A 4 

u = (24, v, 01, f = (0, OJ), s = ‘/*(on - a,,), z = OXY 

p=- ‘/Zca, + oyy>, didt = im + uv, v = (a/ax, ajay, 0) 

(1.4) 

where X, y and f are the horizontal coordinates and time, p and h are the density and thickness 
of the ice cover, averaged over an element of area, A and u are the compactness and drift 
velocity, o is the internal stress tensor of the cover, F are the external forces,f is the Coriolis 
parameter and u = p(A, h) is the shear modulus. 

Equations (1.1) and (1.2) are the laws of conservation of mass and momentum. The Prandtl- 
Reuss equations (1.3) determine the rheology of the ice cover under shear deformations [8]. 
The equation of state (1.4) describes the behaviour of the ice cover under compression and 
stretching. 

The system of six equations (l.l)-(1.4) involves eight unknowns p, A, h, u, v, s, z and p, 
describing the macroscopic state of an ice-cover element, and a parameter a, which in plastic 
shearing deformations is eliminated from (1.3) by using the plasticity co~~tion; in other cases 
it is simply set equal to zero. Equations @.I)-(1.4) may be closed in different ways, depending 
on which of the four phase states of an ice cover is to be represented: diverging, close pack, 
hummocky or non-hummocky. 

A hummocky or non-hummoeky ice cover may be in either of the close pack or diverging 
states. Since a hummocky ice cover consists of pieces of ice floes piled up on one another, an 
important parameter is the average thickness of the pieces in a hummock: /I, s h. The 
parameter h-h, is a measure of the roughness of a hummocky ice cover. The limiting case 
h = h, represents an ice cover in which the contacts among the ice floes are such as to enable 
them to glide over one another without much breakage. Examples of hummocky ice with 
h = h, are shown in Figs 1 and 2. Co~re~ion crushes the edges of the floes in Fig. 1 in such a 
way that they may easily glide over one another ~thout further breakage. The gaps between 
the floes are filled with ice rubble, which acts as a lubricant. The floes in Fig. 2 are plate- 
shaped, corresponding to young sea ice. 

For a diverging ice cover, Eqs (l,l)-(1.4) are closed by adding the relations 

s=‘r=p=fi=O,dh/dt=O,O<A<A. 

The condition for a diverging ice cover to become close packed is 

A close pack ice cover may experience elastic and plastic defo~tio~. Plastic deformation 
are of three types: shear, compaction and hummocking. The properties of shear and 
compaction were described in [l]. We might mention here that when an ice cover experiences 
compaction its compactness increases without any change in thickness. Compaction is possible 
when 0 c A < A, for a hummoeky sheet one puts A,. = 1. 

Breakage involves changes in the microstructure of the ice cover and breakup of the 
connections between floes. When a close pack non-hummoeky ice cover with A= A, is 
compressed, the floe edges are crushed in such a way that the cover goes into a hummocky 
state with h = hf. Stretching causes the ice to break and go into a diverging state. 
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Fig. 1. 

The thickness of an ice cover may increase only in a hummocky sheet with A = A_ = 1 in 
further hummocking. 

The compaction condition for a non-hurnmocky ice cover and compaction and hummocking 
conditions for a cover sheet are similar in form 

P = I~,(A, h) > 0, aX/dt > 0, dhldt = 0 

P = f-&LA, h), AL d A <A** 

(1.5) 

p = n,(A, h, h,, > 0, dAldt > 0, dhldt = 0 (1.6) 

p = p&A, h, h/), A. d A < 1; 

p = zp(h, 1~) > 0, dhldt > 0, p = p,,(h, h,), A = 1 

For brevity, we shall henceforth refer to a non-hummocky ice cover with A E [A*, A_) or a 
hummocky ice cover as an ice cover of type 1, and to a non-hummocky ice cover with 
A = G. = 1, as an ice cover of type 2. 

The conditions for plastic shearing and breakage may be expressed as a function [9] 

1 z,,i = F(o,, A, h) (1.7) 

where T,, and 6, are the shearing and normal stresses in an area element with normal n. In a 
hummocky ice cover F also depends on A,. 

Typical plots of 2, and o, corresponding to (1.7), for fiied A and h, are shown in Figs 3 and 
4. The curve ABCDE in Fig. 3 corresponds to plasticity conditions for an ice cover of type 1. 
The closed curve ABCDEF in Fig. 4 corresponds to plasticity conditions for an ice cover of 
type 2. 

The stresses in an area element with normal n may be expressed as follows [lo]: 

0, + p = f?cos(2<9), T, = RGn(Zq), R = ‘/*(CT,, - O,i”) (1.8) 

where cp is the angle between n and the direction of the principal stress 6,. The principal 
values of the stress tensor o are defined by the formulae 

CT max =_p+(r*+s*)X Q =-p-(2*+&K , mm (1.9) 

It follows from (1.8) that the stressed state at a point is characterized by the Mohr circle in 
the (L o,) plane, while condition (1.7) means that the Mohr circle is tangent to the curve 
ABCDE in Fig. 3 or the curve ABCDEF in Fig. 4. 

It is assumed that when the Mohr circle touches the arcs A B and CD, plastic shearing may 
occur. When the Mohr circle touches the arc BCD, the connections between the ice floes (if 
such existed) are broken and, under stretching, the cover begins to diverge. When the Mohr 
circle touches the arc AFE, the transition is into the hummocky state. The Mohr circles 0, in 
Figs 3 and 4 correspond to limiting states of plastic shearing, before breakage. The point 0, 
has coordinates (-%,(A, h), 0), IC, < 0. For a hummocky ice cover the function x, also depends 
on h,. The Mohr circles 0, correspond to limiting states of plastic shear before compaction or 
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Fig. 3. 

Fig. 4. 

hawking (Fig. 3) and before transition to a hu~~ky state (Fig* 4). The point 0, has 
coordinates (-rc,, 0). 

It is not convenient to use the plasticity condition (1.7) with an arbitra~ ~tion F to solve 
(1.1)-(1.4), because the condition for the Mobr circle to touch the curve (1.7) can be expressed 
in terms of the variables p, s, z appearing in (l.l)-(1.4) only through some rather lengthy 
algebra, At the same time, condition (1.7) is physically quite intuitive. We will therefore 
propose a simple method for approximating the curve (1.7), which intuitively fits the 
properties of ice covers and leads to an easier form~a~on of condition (1.7) in terms of p, s 
and 2. 

On the arcs AB and ED in Figs 3 and 4, F is approximated 
pending to plastic she~ng in a fine-greed friable medium IlO] 

by a linear function, eorres- 

(1.10) 

The point G in Figs 3 and 4 has ~~rdinates t-n,, 0). Using (1.8) and fl,4), we can write 
condition (1.10) in the form 

The arcs BCD in Fiis 3 and 4 and AFE in Fig. 4 are a~rox~ated by the arcs BHD and AIE 
of the Mohr circles 0, and O,, respectively. The conditions for the Mohr circle to touch the 
circIes 0, and O,, respectively, may be written in the form 
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(1.12) 

(1.13) 

Using (1.9) we can rewrite conditions (1.12) and (1.13) as follows: 

s2 + 22 = (p + 7Q2* Xl 3 p 3 -xc, (1.14) 

$ + z2 = @ + 7r,)2, -Ic, 2 p 2 Rl (1.15) 

Thus, the conditions of plastic shearing, breakage and transition to a hummocky state are 
(l.ll), (1.14) and (1.15), respectively. When conditions (1.14) and (1.15) are satisfied in an 
element of the ice cover. we must assume that 

p=s =z=q=qj=o (1.16) 

(1.17) 

Elastic compression stretching deformations occur when 

s2 + T2 < @ - 7cc,)2, 7cp B p > -7c,, (1.18) 

in ice covers of type 1 and when 

s2 + z2 < min[@ + Q2, @ + K 31 ,--II,> p > -7C,, (1.19) 

in ice covers of type 2. Inequality (1.18) can become an equality only if 

dpldt c 0 (1.20) 

If either of conditions (1.18) and (1.19) holds, we must assume that 

p = n,(p, A, h), dAldt = 0, dhldt = 0 (1.21) 

For a hummocky ice cover, the function x, also depends on h,. The functions p,(A, h) in 
(1.5) and (1.6) are determined from the condition rr,(p, A, h) = a,(A, h). 

An elastic shearing deformation occurs when 

~2 + r2 S sin*(y& - XJ2 (1.22) 

Equality in the first of these relationships can occur only if, once h has been eliminated from 
(1.3) using (1.11) it turns out that 

hS0 (1.3 

When conditions (1.22) and (1.23) hold, we must put 

h=O (1.24) 

in (1.3). 
The ice-cover model proposed above involves eight unknown functions p, A, h, s, 7, p, u, v, 

describing the macroscopic structure of the ice cover and depending on x, y and t. These 
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functions are given at the initial time t = 0 in the (x, y) plane and are determined from (l.l)- 
(1.4) at subsequent times. 

2 In ice-cover dynamics one typically has to determine the evolution of the macroscopic 
parameters p, A, h, u, v, s, 2, p in some region Q of the (x, y) plane at times t r 0, given the 
stresses or displacements on the boundary of Q and initial data at t = 0. The variation of the 
macroscopic parameters may be determined from (1.1~(1.4) provided that the functions 

A*, A-, hr, %I, nd, n,, $9 yd (2.1) 

characterizing the rheological properties of the ice cover are known at each point of $2. 

The functions (2.1) depend on parameters that define the macrostructure of she ice cover (the 
geometrical dimensions, shapes and physical-mechanical properties of the ice floes and their relative 
positions), which in turn depend on the temperature of the atmosphere and the ocean, the heat flux, solar 
radiation, and so on. Exact theoretical dete~ination of these functions is, therefore, almost impossible. 
Nevertheless, by expressing them in a simple form, making natural assumptions about the properties of 
ice covers, one can qualitatively describe certain effects in sea ice dynamics. 

Let us consider some simple a~rox~tio~ for the lotions (2.1). 
Supposefirstthat 112cAdiLGl.If 

A.=A.t=f (2.2) 

stresses will occur only in a consolidated pack ice cover; if A < 1, the cover wiII be in the 
diverging state with stress tensor identically equal to zero. The approximation (2.2) may be 
used if the functions TC~ and yd have pronounced extrema at A = 1; yd z IC, IC, 20 if A c 1; 
rc, = rt, = 0. These ass~~ions are legitimate, e.g. in the case of a strongly crushed ice cover, 
made up of small ice floes. 

For the functions rc, we assume that 

(2.31 

for a non-hummocky ice cover and 

for a hummocky ice, where p,, is the density of ice in the undeformed state. The function 0(a) 
characterizes the compaction of the ice floes in a hummock and their degree of cohesion on 
freezing. If e(a)= 1 formulae (2.3) and (2.4) are identical, corresponding to the case in which 
freeziug converts a hummock into a ~~~dat~ pack ice cover. The parameter a is a measure 
of roughness. 

For the plastic deformations of compaction and hummocking, we set 

in the case of a non-hummocky ice cover and 

in the case of a hummocky ice cover. A good approximation is k,(A) = E/(1-v’), where E and 
v are Young’s modulus and Poisson’s ratio of the ice. In other words, we are assuming in this 
case that a close pack ice cover subjected to compre~ion or stretching defor~~o~ behaves 
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like a linearly elastic Hooke’s body with the parameters of consolidated pack ice. 
As the functions k,(A), k;(A), y,(A), O( a are defined in the interval (O., l), they can be ) 

conveniently approximated by simple functions, whose parameters are selected by comparing 
numerical computations with experimental observation. For example, some researchers have 
used the expression [S] 

k;(A) = k,(A) = R exp[2O(A - l)], R = 5 x 10’ N/m2 

The functions rc, and x,, may take arbitrary non-positive values, but II;, should not exceed the 
tensile strength of ice [ll]. At x, = x, = 0 the ice cover no longer resists stretching but goes into 
the diverging state. 

For a hummocky ice cover with h z h,, as shown in Fig. 2, one can set 

“kr = Ic (2.5) 

Hence it follows that s = z =O. In that case the ice cover is modelled by a continuous 
medium: a compressible fluid with possible irreversibility of compression-stretching deforma- 
tions. This case agrees entirely with the model considered in [5]. 

In a close pack ice cover one assumes that 

(P, k,) * (s, ,L P) (2.6) 

which follows from the assumption that the real internal stresses in the sheet are much less 
than its elastic moduli [12]. 

3. It is known that wind, sea currents and waves interact with a sufficiently open pack ice 
cover to induce the formation of various structures of more closely packed ice, such as cells, 
eddies, strips, etc. [6, 13, 141. To describe possible mechanisms for these processes, let us 
consider a diverging ice cover drifting in the field of an ocean eddy. 

Express the force F in (1.2) as 

(3.1) 

where Fti and Fwi are the forces of friction of the wind and the current, respectively, on ice [6] 

C,, are the coefficients of friction, p, and p, are the densities of air and water, and V,and u, 
are the wind and current velocities, respectively. The equation z = q(x, y , t) describes the 
difference between the ocean surface and its horizontal equilibrium position. 

Large time-scale quasi-steady motions of a diverging ice cover are described by the system of 
equations 

dhldt = 0, dAldt + AVu = 0, phf x u = F (33) 

Steady motions of the ocean corresponding to time scales in the f-plane approximation are 
described by the shallow-water equations [15] 

fxu,=-gvq,vu,=o 

Here we are ignoring the effect of the wind and the ice cover on the velocity field in the 
liquid compared with flows present in the liquid when there is no wind and pack ice. This is 
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equivalent to viewing a diverging ice cover as a passive tracer of hydrothermodynamic 
processes in the ocean and the atmosphere [16]. 

Introducing the stream function Y,,, for the velocity field in the liquid, we obtain 

u, = - aTJay, v, = aywlax, q = f Y,I~ 

In turbulent flow one has a stream function Y w = Y,(r), r = (x2 + 3)“’ of the shape shown in 
Fig. 5. It follows from (3.2) and (3.3) that the drift velocity field of the ice cover has a stream 
function 

The singular points of Y in the (x, y) plane are determined from the relations 

y = pxla, I dY,ldrl = (a2 + p2 )H 

If YW has the shape shown in Fig. 5 and moreover 

then there are two singular points in the (x, y)-plane. If (3.4) becomes an equality, the two 
singular points coalesce; if the inequality sign is reversed, there are no singular points. 

The equations of the streamlines, that is, the trajectories of the ice-cover elements, have the 
form 

drldt = - away, dyldt = aye (3.5) 

To determine the type of singular point, let us place the origin at the point and represent Y 
in its neighbourhood in the form 

(3.6) 

where YL, Y&, YL are the values of the appropriate derivatives of Y at the ith singular point. 
Substituting (3.6) into (3.5) and using (3.4), we find the eigenvalues of system (3.5) 

k; = (y;)2 + YLY’, = - (dY,,,/dr)’ (d2Y Jdr?r-’ 

Hence, consulting Figs 5 and 6, we see that the singular point 0, is a centre and 0, is a saddle 
point. The phase portrait is shown in Fig. 6. 

The distribution of compactness in this case is described by the transport equation 
dAldt = 0. If there was initially no ice cover within the region n in the (x, y) plane bounded by 
the separatrix passing through O,, then no ice cover will appear there as time passes. And vice 
versa: an ice cover inside Q cannot leave that region. Its motion within Q is turbulent in 
nature. An ice cover below the phase curve through 0, will describe strongly curved 
trajectories in the neighbourhood of the separatrix loop. 

4. Let us consider a homogeneous ice cover floating on the surface of a viscous liquid under 
the action of a constant wind, assuming that the surface of the liquid is horizontal. It will be 
convenient to denote 
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Fig. 6. 

u, = uwj + iuw,y, V,=V,,+iV,,. V=u+iv 

Fei = Fais + iFg,+y, Fwi = F*i, + iF_,,, i2 = - 1 

The equations of steady motion for the liquid and the ice cover may be written in complex 
form as follows (p denotes the viscosity of the liquid) 

@‘u r/ax2 = ip,,#ii,,,, iphfv = F*i + F~i (4.1) 

The boundary conditions on the liquid surface z = 0 and at the bottom z = -H will be 

~(AAu,,/~~ c (1 - A)& Jaz) = @VlhE + Cl- AIF,,,, z = 0 

U, =o, z=-N; h, =(fp,IEr) -% 

(4.2) 

At A = 1 (consolidated pack ice), condition (4.2) reduces to the requirement that the liquid 
particles adhere to the ice. In the absence of an ice cover, A = 0, condition (4.2) simply 
specifies the wind-shear stresses on the surface of the liquid 

If the depth H of the liquid substantially exceeds the Ekman depth h,, which is typically a 
few dozen metres 1151, the solution of (4.1) will have the following form near the liquid surface 
iI71 

The complex numbers V and k are found from the second equation of (4.1) and (4.2) 

V = A[C,hE(Aexp(-d/4) + I- A) + C,,(l - A)h&,,p,J(fi)l 

k = A[Cg + (1 - A)&,hdiphf+ C,.p,Ycll 

A = pJ V,l V,[AC,,,p,,& + (Ai + I@-- AMiphf+ C,,,pdl 

(4.3) 

In the special cases considered above, we obtain from (4.4) 

Vh = k = C&J V,l V,(2C,p, + iphf), A = 1 

V = pJ V, I VJC, + C~“,C~~~(~~)~[C~“, + iphfj-’ 

(4.4) 
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k=C,,,qyPd V,l Vdh,A =0 

In the limiting case A + 0 the velocity of the liquid at the surface z= 0 makes an angle ld4 
with the wind direction [15]. The velocity of the ice cover is determined by the balance of the 
frictional forces due to the wind and the liquid and the Coriolis force. In a drifting consolidated 
pack ice cover (A =1) the angle between the wind velocity and the ice cover velocity is 
x/4 +arctgCphfl(2C&,)]. 

It follows from (4.3) and (4.4) that sections of the ice cover with differing thicknesses and 
compactnesses will drift at different velocities. In the same wind, therefore, they may collide, 
overtaking one another and forming regions of close pack ice where the collisions occur, or 
drift apart leaving regions of open water. If the boundaries of these sections are straight lines, 
strips of close pack ice will form when they collide. The formation and evolution of strips may 
be described by discontinuous solutions, of the “filament” type, of the equations of dynamics 
for a diverging ice cover [18]. 

5. We will now investigate the effect of plane surface waves on the distribution of a diverging 
ice cover over the ocean surface. The motions under consideration are typified by time scales 
much shorter than 24 hours. Hence the Coriolis force may be ignored in the momentum 
equations. The laws of conservation of mass and momentum may be written characteristically 
as 

dAldt + A&lax = 0, dxldt = u 

phduldt = Cwp,,,(u, - u) - pgmlax + C&d Vd Va 

(5.1) 

It is clear from (5.1) that the elements of the ice cover move along the characteristics. Inter- 
sections of characteristics correspond to regions of ice accretion. 

Let us assume that the flow of the liquid has a velocity potential cp. Then, for linear waves 

I( = acp/ax, hiat = acp/az, z = 0 (5.2) 

As an example, let us consider the potential of periodic plane waves in an infinitely deep 
liquid 

cp = u&Oekz, o2 =gk,e=k.x+ot,k>O (5.3) 

where u, is the amplitude of the horizontal velocity of the liquid particles in the wave. The 
wave amplitude is a = yw / g. 

Substituting (5.2) and (5.3) into (5.1), we obtain 

phduldt = asin& - e) - C,P~ + c&J CrJ v, 

&/dt = o(aulg + 1) 

u = ~~[(c,p, I2 + (pohJ2 I%, sin 8, = C,P,U, / a 

System (5.4) may have singular points (-g/o, Of,,) in the (u, 0) plane, where 

(5.4) 

* = e, + arcsin(p/a) + 2m, n E 2 (5.5) 

The condition p/ad 1 for the existence of singular points may be written as an inequality 
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for the wave amplitude 

Linearizing Eqs (5.4) in the neighbourhood of the singular points (5.5) and evaluating the 
eigenvalues corresponding to 9;) 6;) we obtain 

2x,,* = - CIVP, f I$ 

Di.2 = (c$&)* + (-l)‘J&x2 - 8*)/s 

(5.7) 

The singular points 0; are saddle points (3; are stable foci if D1 c 0 and nodes if D1 3 0. The 
existence of foci or nodes in the phase plane (u, 0) implies that there are regions in the (Cl, t) 
plane in which characteristics intersect. In that case the waves induce the formation of strips in 
the ice. 

If the wind and wave velocities are in the same direction and the wave amplitude a is 
sufficiently small, then oV, CO, and condition (5.6) may hold only when the wind is strong 
enough. In that case intensification of the wind will cause more intensive formation of ice 
strips. 

6. We will now consider the effect of a current in the liquid, localized in the y direction, on a 
close pack ice cover. The current velocity is in the direction of the x axis. The current velocity 
profile V(y) is shown in Fig. 7. The frictional force exerted by the liquid on an element of the 
ice cover in the x direction is determined by the formula 

F = C,(V(r) - u) (6.1) 

Let us assume that the ice cover is stationary and that the current generates elastic stresses in 
the cover. Then (l.l), (1.2) reduce to the equations of statics 

ap a2 at -z+z+ay=-F, 
ap as at _---+- 
ax ay ax =0, A=const, h=const 

to which we must add compatibility conditions for the deformations. Taking Hooke’s law (2.5) 
and (2.9) for compressive deformations, we obtain 

P = - k(awdax + awjay), k = k,h 

where w_ are the components of the displacement in the x and y directions, respectively. The 
condition for the deformations to be consistent may be written as [19] 

2 a% : p+k( a* a** a* a* 

axa> 2k z+i3y 
_-5)p-(7’_T)s=O 

ax 3~ 

Eqs (6.2) and (6.3) have a simple solution 

p=ay+o,, S=-v+Qsr &= -F, T=& 
?Y 

o=const, bp =const, 6, =const 

(6.4) 

Let us consider the effect of an under-ice current on the edge of the ice cover, which is 
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represented by a straight line y = y,. The liquid surface, where y< y,, is free of ice. The 
boundary condition for the stresses is z = 0 at y = y,. Hence, by (6.4) we have 

T=-jFdy (6.5) 
Yl 

If yi <H (see Fig. 7), then z = z(y) is a monotone function (see Fig. 8) and ‘5 = const for y > N. 
Consider the interaction of a symmetrical under-ice current (y_ = 0 in Fig. 7) with the ice 

cover, on the assumption that W, = 0, y = +H. The solution is given by the formulae 

The constant W, is determined from the boundary conditions. Typical plots of z(y) and w,(y) 
are shown in Fig. 9. 

It follows from (6.5) and (6.6) that in the cases considered above, the maximum stresses are 
reached at the points y - _ -+H. If the currents are sufficiently strong, therefore, the ice cover 
may experience plastic flow. 

Let us consider steady plastic flows in which aU the parameters depend only on y and v = 0. 
By (1.1)~(1.3) 

2% F &-=o -=- , (6.7) 
?Y ay 

Fig. 7. Fig. 8 

Fig. 9. 
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S* +X2 = sin’yd(p-xd)* 

Assuming that aulay+O, we deduce from (6.8) that 

It follows from the first equation of (6.8), (6.9) and (6.11) that 

p = const, s = const, z = const, u = V(y) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

The plasticity condition (6.9) reduces to the equation 

sin2yd(s+s,+x,)*-CL(S+Sg+Bd)+CL(SO+Rd)=0 (6.13) 

The solution of Eq. (6.13) satisfying the estimates (2.6) may be written approximately as 

s+sg+x(j ~:se +7rd +sinYd 00 +a* +o((so +%d*) 
4P P2 

Hence it is obvious that s z- 0 and condition (6.10) will hold if zau/ay 2 0. The constant s,, in 
the solution determines the pressure p. The stress z is found from (6.9). 

Let us assume that the velocity field V(y) and the stresses s and z are such that problems 
(6.5) and (6.6) cannot possibly have a purely elastic solution. We will construct steady elastic- 
plastic solutions, on the assumption that part of the ice cover is moving as a whole at a constant 
speed u, = const, while the other part is taking part in plastic flow. The stresses in the elastic 
region must reach a limiting maximum value z = +r, that satisfies the plasticity condition (6.9) 
at the boundaries with the plastic region. 

In the problem of the interaction of a current with the ice edge, the elastic region has a left 
boundary coinciding with the edge. Its width L and u,, are found from the equations 

zp =c,ficvcYb%)4~ W)=u, 
Yl 

The plastic flow (6.12) and (6.13) borders on the right edge of the elastic region. The stresses 
in the elastic region are determined from (6.6), where we must assume that u = u,,. The velocity 
profile of the ice cover is shown in Fig. 10. 

In the interaction of a symmetrical current with a consolidated pack ice cover, the elastic 
region is a strip with boundaries y = fL. The quantities u, and L are found from the equations 

The region of the plastic flow (6.12) and (6.13) borders on the elastic region. The stresses in 
the elastic region are determined from (6.6), where we must assume that u=h. The velocity 
profile of the ice cover is shown in Fig. 11. The width of the elastic region is 2L and the velocity 
u,, depend on z,, hence also on the stresses p and S. Hence an increase in ice compression will 
induce an increase in 2, and may suppress the plastic flow. 
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Fig. 10. Fig. 11. 

7. We will now consider a hummocky ice cover with h L/Q. Let us assume that the 
approximations (2.2) and (2.5) hold, i.e. the ice cover is compacted up to A = 1 without the 
formation of internal stresses, and that the shearing stresses in hummocking are much less than 
the compression. The system of equations for the motion of such an ice cover is 

&Ah)/& + V(A44hu) = 0 (7.1) 

p&duldw-Vp+F (7.2) 

p=O if A<l;p=~~~(h,hf) if dh/dt>O,A=l 

p = q, dhldt = 0 if z,(h, 4) <p c IC#, hf), A = 1 

1cp(hf, Iy) = q(& 4) = 0, qh, &I = w - 4) 

(7.3) 

Consider the problem of an ice massif colliding with a solid wedge-shaped wall with wedge 
angle 2~. The sides of the wedge make angles a with the x axis. 

This problem was considered for a = n/2 in [l], where an unsteady, discontinuous solution 
describing the process was found. We shall investigate steady discontinuous solutions of 
equations (7.1)-(7.3) with F = 0, which may occur in reality in flow past a wedge with angle 
2ac 2a. <IT near the apex, where the influence of the force F defined by (3.1) is small 
compared with the internal stresses in the ice. 

Let us assume that the ice cover, on collision with the wall, is compacted up to A = 1 and 
then forms hummocks. At the stationary fracture between the diverging and close packed 
hummocky ice we have 

A,~V,sin8=I+V..sin@-Q), V,cos0=V2cos(O-a) 

AIh,v;2(1-AAlh, /h,)sin28=Ap&, h,)/po 

(7.4) 

The subscript 1 indicates the parameters of the diverging ice cover entering the fracture, the 
subscript 2 indicates the parameters of the hummocky ice cover and 8 is the angle between the 
direction of the discontinuity and the x axis. 

From (7.4) we derive a cubic equation for 8 

(z - v)[z(A# + 1) + 11 = A,z(l + z)~ (7.5) 

z = tgetga, u = tg%c, p = poq / k 

Equation (7.5) always has one real root z- < 0, which is physically meaningless. It follows 
from (7.5) that if there are two more real roots z&, they will satisfy the condition z;tZ > tg’a. 
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The existence of positive roots z;2 depends on the sign of the determinant of Eq. (7.5), which is 
too cumbersome to present here. Vanishing of the determinant corresponds to the limiting 
angle of the wedge 2a at which there is a solution with a stationa~ ~scontin~ty attached to 
the wedge tip. At a c cc, there are two solutions with an attached discontinuity, both such that 
8 > a. An analogous effect occurs in gas dynamics in flow past a wedge (201. The unique 
solution may be determined from experimental data. 

Let us consider two limiting cases in which a solution of Eq. (7.5) may be constructed 
approximately. Let ~41, that is, the ice cover is moving slowly. Then 

2 - =-l+O@), z&=(1-A, I&)/(2A,)-tO@) C7.61 

Ai = 1 + Af - 2Ar( 1 + 2tg2u) 

The condition A, zs 0 yields the inequality 

AI d N(a), N(a) = 1 + 2tg2a - 2tga( 1 f tg2a)’ 

In other words, for a solution with attached discontinuity to be feasible at slow ice speeds, the 
compactness must be less than N(a) 6 1. The maximum angle of the wedge is determined in 
that case by the form~a 

I 1cA; 
tg2a* = -(- - 

2 2A, 
1) 

Now set ~1, corresponding to a small wedge angle. Then 

4 =u/(l-A,)+O(u2), z- =(l+uA, -2A, -,,&)/(2A1)+O(~) 

Zz” =(l+nAt -ZA~~~)/(2A~)+~~), A, =(l+M, -2A,)2+4AI(1-A,) 

(7.7) 

Obviously, if A1 is close to unity, the solution (7.7) becomes meaningless. So let 
A, = 1 - $(~)a. Then the root z: may be found as a series in powers of d(u) 

zj+=+Gy,+lJy,+ . . . . y1>0 (7.8) 

Substituting (7.8) into (7.9, we obtain 

(u-l)y;+ay~-l=o (7.9) 

This equation has real roots provided that a2 > 4(1-u). If u a 1 there is a real and positive 
root y,. If p < I the condition for Eq. (7.9) to have real roots becomes 

Hence it is clear that the critical compactness of the ice, at which solutions may exist with an 
attached discontinuity, increases together with the velocity at wilich the ice approaches the 
wedge. 

This research was carried out with financial support from the Russian Fund for Fundamental 
Research (93-03-16842). 
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